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Summary
The process of dead cell clearance by phagocytic cells, called efferocytosis, prevents inflammatory
cell necrosis and promotes resolution and repair. Defective efferocytosis contributes to the pro-
gression of numerous diseases in which cell death is prominent, including liver disease. Many gaps
remain in our understanding of how hepatic macrophages carry out efferocytosis and how this
process goes awry in various types of liver diseases. Thus far, studies have suggested that, upon liver
injury, liver-resident Kupffer cells and infiltrating monocyte-derived macrophages clear dead cells,
limit inflammation, and, through macrophage reprogramming, repair liver damage. However, in
unusual settings, efferocytosis can promote liver disease. In this review, we will focus on effer-
ocytosis in various types of acute and chronic liver diseases, including metabolic dysfunction-
associated steatohepatitis. Understanding the mechanisms and consequences of efferocytosis by
hepatic macrophages has the potential to shed new light on liver disease pathophysiology and to
guide new treatment strategies to prevent disease progression.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction
The clearance of dead cells, termed efferocytosis, is
an essential process to maintain normal tissue
homeostasis and to restore homeostasis following
tissue damage.1–4 Impaired efferocytosis and sub-
sequent accumulation of dead cells promotes tissue
necrosis, inflammation, and defective resolution
and repair, and has been shown to contribute to
numerous inflammatory diseases in humans.1–4

Cell death occurs at both the onset and during
progression of acute liver injury (ALI) and chronic
liver diseases.5–8 Hepatic macrophages, including
both resident Kupffer cells (KCs) and infiltrating
monocyte-derived macrophages (MoMFs), are
primarily responsible for efferocytosis of dead cells
in the liver, but other liver cells, such as hepatic
stellate cells (HSCs) and hepatocytes, can also carry
out efferocytosis, at least in vitro.9–12 Understand-
ing the mechanisms of efferocytosis and why
defective efferocytosis occurs in the setting of
chronic inflammatory diseases has emerged as a
major area of research,1–3 but many gaps remain in
our knowledge of the role of efferocytosis in the
pathogenesis of liver disease.9 Here, we will review
the discoveries that have been made to date on the
roles of efferocytosis in normal liver physiology
and various types of liver disease. We will highlight
the knowledge gaps in this important area of
research and suggest key topics for future investi-
gation, including in therapeutic translation.
The fundamentals of efferocytosis (Fig. 1)
Efferocytosis is the process by which phagocytic
cells engulf and ingest dead or dying cells. This
process is carried out mostly by professional
phagocytes, like macrophages and dendritic cells,
but non-professional phagocytes, such as epithelial
and mesenchymal cells, can also engulf dead
cells.1–4 Efferocytosis is a multi-step process
involving the recognition, binding, internalisation,
and digestion of dead cells.13 In the first stage, dead
cells release so-called find-me molecules, e.g.,
sphingosine-1-phosphate and nucleotides, which
promote the migration of macrophages to dead
cells. Macrophages then recognise the dead cells
through efferocytosis receptors, such as the TAM
(Tyro-Axl-MerTK) family receptors; T cell/trans-
membrane, immunoglobulin, and mucin (TIM)
family members, such as TIM4; triggering receptor
expressed on myeloid cells 2 (TREM2); LDL
receptor-related protein 1; and BAI1 (brain-specific
angiogenesis inhibitor 1). These receptors interact
with molecules on the surface of dead cells, e.g.
phosphatidylserine and calreticulin, either directly
or indirectly through bridging molecules, such as
Gas6, protein S, and MFG-E8 (milk fat globule
epidermal growth factor 8). The processes of
internalisation and digestion are mediated by
Rac1-actin activation followed by phagosome-
lysosome fusion. Interestingly, the debris resulting
from the phagolysosomal degradation of dead cells,
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Key points

� Both resident Kupffer cells and monocyte-derived macrophages
recruited to the liver can clear dead liver cells and their debris.

� In certain setting, hepatic stellate cells, hepatocytes, and liver sinu-
soidal endothelial cells may also be able to engulf dead liver cells, but
less is known about this area.

� Most studies have suggested that liver efferocytosis, particularly
macrophage-mediated clearance of dead neutrophils or hepatocytes,
promotes the resolution of liver injury. Hence, if efferocytosis becomes
impaired during disease progression, e.g. as is thought to occur in
alcohol-related liver disease and metabolic dysfunction-associated
steatohepatitis (MASH), liver injury and fibrosis does not resolve.

� The two major mechanisms thought to explain the beneficial effects of
macrophage-mediated efferocytosis in the liver are the prevention of
inflammation and injury from uncleared dead cell debris and the
reprogramming of macrophages into a pro-resolving phenotype.

� In contrast to the situation with macrophage efferocytosis, effer-
ocytosis by hepatic stellate cells, e.g. in viral hepatitis, may activate
these cells and thereby promote liver fibrosis.

� Many studies in this area of research are based on in vitro effer-
ocytosis data with or without correlation with liver injury endpoints
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upon transport to the macrophage cytoplasm, can activate sig-
nalling pathways that reprogramme macrophages to clear mul-
tiple dead cells (continual efferocytosis) and to carry out
resolution and repair functions.1–4

The main function of efferocytosis is to prevent the release of
cellular contents (necrosis), protect against inflammation, and
promote inflammation resolution through the release of reso-
lution mediators such as transforming growth factor-b (TGFb),
interleukin-10 (IL-10), and lipid mediators of resolution.1–3,14,15

The links between efferocytosis and resolution constitute a
positive-feedback cycle, as resolution mediators are not only
produced by efferocytosing macrophages but can also further
promote efferocytosis.16,17 Accumulating evidence suggests that
impaired efferocytosis contributes to human chronic inflamma-
tory diseases.1–3 Mechanisms of impaired efferocytosis include
defects in dead cell recognition by inappropriate expression of
“don’t-eat-me” signals, such as CD47 and signal regulatory pro-
tein-a (SIRPa);18 loss of efferocytosis receptors via proteolytic
cleavage;19,20 and defective dead cell internalisation.21
rather than in situ quantification of hepatic efferocytosis per se.

� Future studies exploring possible human genetic links between
efferocytosis-related gene variants and progression of various types
of liver disease would help bridge the gap between experimental
studies and human liver disease.

� Despite these limitations, this area of research has substantial
translational potential, as new strategies are emerging to boost
efferocytosis and resolution in liver disease as a way to help resolve
liver injury.
Cell death in liver disease
Multiple forms of liver cell death, including necrosis, apoptosis,
necroptosis, pyroptosis, and ferroptosis, have been reported
in various types of liver disease,5–8,22,23 including ALI and meta-
bolic dysfunction-associated steatohepatitis (MASH; formerly
NASH). Caspase-dependent apoptosis involves membrane
condensation and then rapid macrophage-mediated clearance
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Fig. 1. Fundamentals of efferocytosis. Phagocytes, particularly MFs, capture ACs through recognition of signals on the ACs, notably PS, by receptors, e.g., MerTK,
TIM4, and TREM2. AC internalisation and phagolysosomal degradation clear tissues of dead cells, which prevents necrosis and inflammation. In addition,
efferocytosis reprogrammes MFs into a pro-resolving phenotype driven by efferocytosis receptor signalling and pathways triggered by the degraded AC cargo, e.g.
amino acids, lipids, and nucleic acids. The reprogrammed MFs secreted resolution mediators, e.g. interleukin-10, that both repair tissues and further stimulate
efferocytosis. The figure was generated using Biorender.com. ACs, apoptotic cells; MFs, macrophages; PS, phosphatidylserine; MerTK, MER proto-oncogene,
tyrosine kinase; TIM4, T cell immunoglobulin and mucin domain containing 4; TREM2, Triggering receptor expressed on myeloid cells 2; LRP1, LDL receptor
related protein 1; BAI1, Adhesion G protein-coupled receptor B1.
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unless efferocytosis is defective.1,2,4 Hepatocyte apoptosis is a
feature of virial hepatitis, alcohol-associated liver disease (ALD),
and MASH.24,25 Apoptosis in liver disease can also occur in
KCs,26–28 HSCs,29,30 liver sinusoidal epithelial cells,31,32 and infil-
trating neutrophils.33 Necroptosis is an MLKL-RIP3-dependent,
caspase-independent form of cell death in which the dead cells
become leaky and promote inflammation.34 Hepatocyte
necroptosis has been shown to play a role in the pathogenesis of
ALD,35,36 MASH,37–39 and liver cancer.40 However, the role of
necroptosis in the pathogenesis of ALI is controversial.41 A recent
study also showed that sublethal necroptosis in hepatocytes
contributes to inflammation and liver cancer.42 Pyroptosis refers
to cell death mediated by caspase 1-mediated inflammasome
signalling, leading to pore formation in cells by gasdermin D and
NINJ1.43 Pyroptosis has been implicated in ALD,44 MASH,45–47 and
ALI.22,48,49 Lastly, cell death regulated by iron-dependent lipid
peroxidation, termed ferroptosis,50 may contribute to the patho-
genesis of MASH51,52 and ALI.53–55

Hepatic macrophage heterogeneity in liver disease
In healthy liver, resident KCs represent the major type of hepatic
macrophage, and theycan initiate an inflammatory responseupon
sensing liver injury.56,57 In addition to resident KCs, circulating
monocytes in the blood can infiltrate the liver and differentiate
into MoMFs to mediate a chronic inflammatory response in
diseases such as ALD and MASH – this process is often associated
with the loss ofKCs.58–60Aswill bediscussedbelow, the efferocytic
capabilities of resident KCs and recruited MoMFs can differ.61 In
the past decade, single-cell RNA sequencing has revealed hepatic
macrophage heterogeneity inmousemodels as well as humans.62

For example, two functionally different subsets of murine KCs, a
major CD206lowESAM– population (KC1) and a minor
CD206hiESAM+ population (KC2), were identified in both the
steady-state and in diet-induced obesity.63 In addition, lipid-
associated macrophages, which express osteopontin and des-
min, were found in steatotic livers andwere located in the regions
of the liver with reduced numbers of KCs.59 Five macrophage
subclusters have been identified inmurineMASH livers, including
so-called scar-associated macrophages (SAMs), characterised by
highexpressionof TREM2andCD9.60,64 SAMswere found to reside
near areas of fibrosis, and they have been implicated in carbon
tetrachloride (CCl4)-induced liver fibrosis via the expression of
matrix metalloproteinases, which, despite the name, can be
pro-fibrotic in the liver.65 In addition, TREM2+CD9+ SAMs were
also identified in human cirrhotic livers, and conditioned media
fromcultured SAMsactivatedprimaryHSCs.66Aswill bedescribed
below, TREM2 can function as an efferocytosis receptor in MASH
livers. For a detailed overview of hepatic macrophage sub-
populations, the reader is referred to excellent reviews published
elsewhere.56,57,67

Efferocytosis in liver diseases (Fig. 2)
Clearance of dead cells or debris by KCs68–70 and MoMFs71 in the
liver, and possibly by hepatocytes72–74 and liver endothelial
cells,75,76 is required to maintain normal hepatic function,9,77,78

while dead cell engulfment by HSCs may lead to HSC activa-
tion.10,11,79–81 Here, we discuss the mechanisms and conse-
quences of dead cell clearance carried out by different liver cells
in various types of liver disease (Table 1).
JHEP Reports 2024
Efferocytosis in toxicant-induced ALI
Exposure to certain chemicals can cause hepatocyte death and
liver damage, inflammation, and occasionally fibrosis. CCl4 is a
hepatotoxic agent that is classically used to induce liver injury
and fibrosis in mice. CCl4-induced hepatotoxicity results in the
production of free radicals that cause oxidative stress and lipid
peroxidation, leading to hepatocyte damage, inflammation, and
the formation of fibrotic scar tissue in the liver.82 Investigators
used this model to investigate a protein called fatty acid binding
protein 7 (FABP7), which is a fatty acid binding protein localised
to KCs. In CCl4-treated mice, Fabp7 knockout caused elevated
plasma alanine aminotransferease, aspartate aminotransferase,
and lactate dehydrogenase, indicative of liver injury, as well as
lower KC numbers in areas of liver necrosis and elevated liver
fibrosis.83 The authors showed that efferocytosis was impaired in
KCs from Fabp7-knockout mice compared with wild-type KCs
ex vivo, and this was associated with lower expression of the
efferocytosis receptor CD36 in the knockout KCs. While these
ex vivo findings could provide a possible mechanism for the
in vivo findings, direct evidence linking defective efferocytosis
in vivo to liver damage and fibrosis in the Fabp7-knockout mice
remains to be demonstrated.

In a model of reversible hepatic fibrosis in which mice were
treated with CCl4 for 4 weeks and then followed for up to 10 days
thereafter, two subsets of liver-infiltrating macrophages,
CD11bhigh F4/80intLy6Chigh and CD11bhighF4/80intLy6Clow, were
identified during liver fibrosis resolution.84 The Ly6Clow subset,
which was derived from the Ly6Chigh subset, increased progres-
sively during the fibrosis-resolution period and showed high
expression of genes associated with extracellular matrix degra-
dation, notably genes encoding certain types of metal-
loproteinases, and phagocytosis. These Ly6Clow macrophages also
showed evidence of having ingested dead cell debris in the livers
of the fibrosis-resolving mice. Most importantly, experimental
depletion of this so-called "restorative macrophage subset"
blunted fibrosis resolution. Conversely, these macrophages could
be expanded in the livers of CCl4-treated mice by the adminis-
tration of phagocytosis-stimulating liposomes, and this treat-
ment enhanced the resolution of fibrosis. Efferocytosis of dead
hepatocyte debris by bone marrow-derived macrophages ex vivo
recapitulated the restorative macrophage phenotype through an
ERK signalling pathway. In another study, the authors focused on
an efferocytosis-activated STAT3/IL-10/IL-6 autocrine-paracrine
pathway in macrophages that promoted a restorative pheno-
type and further enhanced efferocytosis.85 The authors pre-
sented evidence that this pathway promoted inflammation
resolution and liver repair and regeneration in CCl4-treated mice.

While these studies suggest that efferocytosis by hepatic
macrophages can improve fibrosis in ALI, efferocytosis-mediated
tissue repair can also lead to a fibrogenic response86 that, in the
wrong setting, can be pathogenic. In this context, a recent study
focused on the secretion of TGFb1 by macrophages following
ingestion of apoptotic neutrophils, as TGFb1 is a potent activator
of HSCs and inducer of liver fibrosis.33 Efferocytosis in this sce-
nario was dependent on the bridging molecule CCN1 (cellular
communication network 1), which binds phosphatidylserine (PS)
on apoptotic cells and integrin avb3 on macrophages. When the
investigators caused an impairment in efferocytosis via a muta-
tion in CCN1 in CCl4-treated mice, apoptotic neutrophils were
increased in the liver, but there were decreases in TGFb1, HSC
3vol. 6 j 100960
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activation, and liver fibrosis. Thus, the role of efferocytosis in
experimental ALI is complex, suggesting that certain mecha-
nisms of efferocytosis can promote fibrosis resolution, while
other mechanisms can have the opposite effect. A key issue, yet
to be resolved, is what happens to efferocytosis in the liver in
specific types of ALI in humans, which, if biopsy material were
available, could be assessed by using validated assays of in situ
efferocytosis in liver sections.39

Efferocytosis in drug-induced liver injury
Drug-induced liver injury (DILI) is an acute form of liver injury
and, if not reversed, can result in liver failure.87 DILI can be
caused by conventional drugs, herbal medications, dietary
supplements, and other xenobiotics.87 The pathogenesis of DILI
is predominantly characterised by death of hepatocytes,
although cholangiocyte or endothelial cell death may also occur.
The release of damage-associated molecular patterns (DAMPs)
from dead cells induces a pro-inflammatory response, resulting
in the recruitment of neutrophils and then, if the insult is
removed, MoMFs to promote the clearance of dead cell debris
and liver regeneration.5

As mentioned previously, MerTK is an efferocytosis receptor
whose activation and participation in apoptotic cell uptake can
promote resolution signalling. Patients with acetaminophen
JHEP Reports 2024
(APAP)-induced acute liver failure exhibited an increase in
resolution-like MerTK+HLA-DRhigh monocytes and hepatic mac-
rophages, which are characterised by a suppressed inflammatory
response and enhanced efferocytic/phagocytic responses.88 A
similar phenotype of hepatic macrophages (MerTK+MHCIIhigh)
with increased efferocytic capabilities was found during the
resolution phase of APAP-induced ALI in mice.88 A protective role
for MerTK was suggested by data showing persistent liver injury
and inflammation, and accumulation of activated neutrophils
following APAP overdose in MerTK-deficient mice. In vitro,
MerTK+HLA-DRhigh monocytes were able to efficiently effer-
ocytose apoptotic neutrophils. These data suggest that MerTK on
resolving-type monocytes/macrophages participates in apoptotic
cell clearance and resolution of inflammation in APAP-induced
liver injury, but analysis of apoptotic neutrophil clearance by
macrophages in liver tissue will be necessary to bolster this
conclusion.

Similar to toxicant-induced liver injury, infiltrating Ly6Chigh

monocytes differentiate into Ly6Clow MoMFs during the
resolution phase of acute APAP-induced liver injury, with
increased expression of a specific repertoire of bridging mole-
cules and receptors that allow for engulfment of apoptotic
neutrophils.89 When circulating Ly6Chigh monocytes were
ablated in APAP-overdose mice, the subsequent decrease in liver
4vol. 6 j 100960
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Table 1. Efferocytosis in various types of liver disease.

Types of liver
disease

Experimental model(s) Efferocyte cell type/receptor Type of dead cell Consequences of efferocytosis Ref.

Toxicant-induced
ALI

CCl4-induced liver fibrosis
progression

KCs/CD36 Apoptotic thymocyte Impaired efferocytosis increases liver injury (elevated ALT, AST,
and LDH), hepatic necrotic area, and liver fibrosis.

83

CCl4-induced liver fibrosis
resolution

MoMFs CD11bhighF4/80int

Ly6Clow (restorative
macrophage)

Apoptotic hepatocyte Efferocytosis of hepatocyte debris induces increased restorative
MF subset, which enriches in a gene expression profile
favouring liver fibrosis resolution (matrix degradation,
phagocytosis); STAT3-IL10-IL6 autocrine-paracrine pathway
involves in efferocytosis-promoted MF phenotypic conversion.

84,85

CCl4-induced liver fibrosis
progression

KCs/integrin avb3 Apoptotic neutrophil Efferocytosis of apoptotic neutrophil increases MF Tgfb1
secretion, resulting in HSC activation and liver fibrosis.

33

DILI APAP-induced liver injury
resolution

Monocytes and MoMFs:
MerTK+HLA-DRhigh (human);
MerTK+MHCIIhigh (mouse)

Apoptotic neutrophil Efferocytosis reduces neutrophil accumulation,
pro-inflammatory response, and liver injury.

88

APAP-induced liver injury
resolution

Monocytes and MoMFs:
Ly6Clow

Apoptotic neutrophil Efferocytosis promotes a gene expression profile of apoptotic
cell bridging molecules and receptors, favouring dead
neutrophil clearance and Ly6Chigh/Ly6Clow transition.

89

APAP-induced liver injury
resolution

KCs and MoMFs Necrotic hepatocyte Efferocytosis promotes MF maturation and differentiation, and
enhances inflammation resolution.

90,91

APAP-induced liver injury
resolution

Alternatively activated MFs Necrotic hepatocyte Efferocytosis promotes necrotic hepatocyte clearance,
inflammation resolution and reduces necrosis and liver injury.

92

Hepatic IRI IRI KCs Apoptotic neutrophil Efferocytosis promotes inflammation resolution and decreases
liver injury.

94

IRI KCs and MoMFs Apoptotic neutrophil Efferocytosis promotes apoptotic neutrophil clearance,
specialised pro-resolving lipid mediators and growth factor
production, resulting in inflammation resolution.

95,96

IRI KCs/TIM4 Apoptotic thymocyte Efferocytosis promotes IL10 production and decreases
inflammation, resulting in resolution of liver IRI.

99

IRI KCs/MerTK Apoptotic hepatocyte Efferocytosis promotes apoptotic hepatocyte engulfment,
reduces DNA accumulation, causing decreased MF STING
activation-induced inflammation post-IRI.

101

IRI MoMFs/Trem2 Apoptotic cell Trem2 mediated efferocytosis promotes the resolution of
inflammation post-IRI through regulating Rac1 signal.

104

Viral
hepatitis-induced
liver injury

HBV/HCV HSCs/ICAM-1 Disease-associated
lymphocyte

Efferocytosis induces HSC activation. 79

HIV plus Alcohol HSCs/Axl Apoptotic bodies from
HCV-infected
hepatocyte

Efferocytosis promotes HSC activation. 80

HCV HSCs Apoptotic bodies from
hepatocyte

Efferocytosis promotes oxidative radicals, resulting in HSC
activation.

10

CLD BDL KCs Apoptotic bodies from
hepatocyte

Efferocytosis promotes Fas ligand production by KCs, inducing
inflammation and HSC activation.

106

BDL HSCs Apoptotic bodies from
hepatocyte

Efferocytosis promotes HSC activation. 10

BDL HSCs/Galectin-3 Apoptotic bodies from
hepatocyte

Galectin-3 modulates efferocytosis-induced HSC activation and
fibrosis.

107

Reversible BDL CD68+ MFs Apoptotic
cholangiocyte

Efferocytosis promotes extracellular matrix remodelling by
induction of subsets of MMPs.

108

(continued on next page)
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Ly6Clow MoMFs was associated with an accumulation of
apoptotic neutrophils.89 Similar findings were reported in other
studies using different methods to prevent entry of monocytes or
restorative-type macrophages into the livers of APAP-overdose
mice.90,91 Conversely, when mice with APAP-induced liver
injury were infused with alternatively activated macrophages,
which in vitro can engulf necrotic hepatocytes, there was a
decrease in hepatocellular necrosis.92 Further, treating a rat KC
line with erythropoietin promoted KC phagocytosis of beads or
bacteria, which was postulated to mediate the protective effects
of erythropoietin in acute APAP-induced liver injury in mice.93

While these studies suggest that increasing resolution-type,
pro-efferocytic macrophages in the liver may enhance recovery
from APAP-induce liver injury, the actual beneficial role of
efferocytosis per se is unproven, as quantification of in situ
efferocytosis of dead cells by macrophages in the liver was not
reported in any of these studies. Accordingly, future studies that
include measurements of efferocytosis by specific subsets of
hepatic macrophages in situ will be needed to further
understand the roles, mechanisms, and therapeutic potential of
efferocytosis in DILI.

Efferocytosis in hepatic ischaemia-reperfusion injury
Hepatic ischaemia-reperfusion injury (IRI) is one of the primary
causes of early liver dysfunction and failure following liver
transplantation, and studies have suggested that impaired
phagocytosis of dead cells in the liver by resident KCs plays a key
role in the pathogenesis of hepatic IRI. Analysis of post-IR livers
revealed macrophages with numerous long pseudopodia and
distribution of the Golgi complex towards the damaged tissue,
suggesting that the macrophages were phagocytosing dead
cells.94 The macrophage pseudopodia were dependent on
urokinase-type plasminogen activator (u-PA) and plasminogen,
and mice deficient in u-PA or plasminogen showed impaired
macrophage phagocytosis and impaired liver tissue repair.94

Another study showed that treatment of IRI-affected mice with
the pro-resolving lipid mediator resolvin D1, acting through its
receptor ALX/FPR2, caused a shift from inflammatory to
resolving-type macrophages in the liver, improved efferocytosis
of dead Gr-1+ myeloid cells, and lessened liver injury.95 Another
link between efferocytosis and protection from IRI comes from a
study indicating a pro-efferocytic function of netrin-1, as
deletion of netrin-1 impaired efferocytosis of apoptotic poly-
morphonuclear neutrophils, while exogenous netrin-1 treatment
enhanced efferocytosis both in vitro and in IR livers and pro-
moted repair and regeneration of injured livers.96

TIM4 is an efferocytosis receptor expressed in several types of
myeloid cells, including KCs.97 The role of TIM4 in IRI is complex.
One study found that TIM4 expression was elevated in
IRI-affected mice and that deletion or antibody-mediated
neutralisation of TIM4 blocked inflammatory macrophage entry
into the liver and lessened liver tissue damage.98 On the other
hand, TIM4-deficient bone marrow-derived macrophages
showed a defect in the engulfment of necrotic hepatocytes
in vitro, but analysis of dead cell uptake by macrophages in
post-IR livers was not reported. A second study showed that
TIM4 was expressed exclusively by KCs in post-IR livers and that
KC-TIM4 deficiency worsened IR liver injury and prevented
tissue resolution.99 The efferocytic function of KC-TIM4 was
demonstrated ex vivo, but, as above, an in situ analysis of effer-
ocytosis in post-IR livers was not reported. Thus, the role of TIM4
in efferocytosis and resolution in the setting of hepatic IRI
6vol. 6 j 100960



requires further analysis, including careful analysis of dead cell
uptake by macrophages.

MerTK is another efferocytosis receptor that has been studied
in hepatic IRI. One group reported that deletion or inhibition of
macrophage Gsk3b (glycogen synthase kinase 3b) promoted the
reparative phenotype of hepatic macrophages in IR and lessened
liver injury.100 These protective effects were diminished in
MerTK-deficient mice, but precise links among Gsk3b, MerTK
regulation, and MerTK-mediated resolution and efferocytosis
remain to be elucidated. Another study suggested a link between
exacerbated IR liver damage in aged mice and A disintegrin and
metalloprotease 17 (ADAM17)-mediated MerTK cleavage,101

which is a mechanism of impaired efferocytosis and resolution
in the setting of inflammation.19 In aged IRI-affected mice, the
accumulation of apoptotic hepatocytes was increased, accom-
panied by increases in DNA, activation of STING (stimulator of
interferon genes), and liver injury. Treatment of the mice with
ADAM17 small-interfering RNA mitigated these processes,
including decreasing the number of apoptotic cells in the liver.
Although in situ efferocytosis was not analysed, another study
exploring a different disease featuring defective efferocytosis
(atherosclerosis) showed that prevention of MerTK cleavage
enhances in situ efferocytosis and tissue resolution.19 Thus,
ADAM17-mediated MerTK cleavage may contribute to the path-
ophysiology of IR-induced liver injury. These findings should not
be confused with another study showing that a non-efferocytic
signalling function of MerTK can promote liver fibrosis in
MASH by increasing the production of TGFb,102 which is
consistent with human genetic data.103 Interestingly, the effer-
ocytosis receptor TREM2 may cooperate with MerTK in
IR-induced liver injury, e.g. by enhancing Rac1-mediated
apoptotic cell engulfment, to promote efferocytosis-induced
reprogramming of hepatic macrophages in the resolution phase
of IRI.104

Efferocytosis in viral hepatitis-induced liver injury
Studies of livers from patients with viral hepatitis have suggested
that dead liver cells can be engulfed by HSCs and that this
process may promote HSC activation and liver fibrosis. In HBV-
and HCV-infected livers, ICAM-1-mediated engulfment of
disease-associated lymphocytes, but not control lymphocytes, by
an HSC line was observed in vitro and led to HSC activation.79

When internalisation of these lymphocytes was prevented by
blocking ICAM-1 or the engulfment proteins Cdc42 or Rac1, HSC
activation was prevented. In another study, apoptotic bodies
shed by a hepatocyte line infected with HCV were also engulfed
by HSCs in vitro, leading to HSC activation in a manner that was
dependent on hepatocyte-derived growth factor in the apoptotic
bodies.81 These findings are consistent with the results of prior
in vitro studies.10,11 Thus, it is possible that the engulfment of
diseased lymphocytes and/or hepatocyte-derived apoptotic
bodies by HSCs contributes to viral hepatitis-induced liver
fibrosis, but the difficulty in creating mouse models of viral
hepatitis limits the ability to show causation in vivo. Finally, in
people living with HIV, alcohol abuse can promote liver fibrosis.
In this context, investigators found that HSCs engulfed apoptotic
bodies derived from hepatocytes that were both infected with
HIV and exposed to the alcohol metabolite acetaldehyde.80 The
efferocytosis receptor Axl, which is in the same family as MerTK,
mediated the uptake of these apoptotic bodies, and HSC
activation occurred via activation of ROS-JNK-ERK1/2 and
IL6-JAK-STAT3 pathways. As above, causation studies in vivo are
JHEP Reports 2024
limited by the paucity of available mouse models of HIV
infection.

Efferocytosis in cholestatic liver disease
Cholestatic liver disease, which is caused by blockage of bile flow,
is characterised by the elevation of alkaline phosphatase in the
blood, with milder elevations of transaminases, associated with
apoptotic and necrotic hepatocyte death, liver inflammation, and
liver fibrosis.105 In one study, KCs were isolated from a mouse
model of cholestatic liver disease caused by experimental bile
duct ligation (BDL) and then incubated ex vivo with hepatocyte-
derived apoptotic bodies.106 The KCs engulfed the material,
leading to expression of the death receptor activator Fas ligand,
hepatocyte apoptosis, and subsequent KC inflammatory activa-
tion. Uptake of apoptotic bodies by these KCs could be blocked by
the KC toxicant gadolinium chloride, which, when administered
to BDL mice, dampened liver inflammation and reduced the
levels of HSC activation markers. Another study focusing on the
uptake of apoptotic bodies by HSCs in vitro suggested that
efferocytosis-induced HSC activation (above) may contribute to
liver fibrosis in a rat BDL model.10 As further evidence for the
possible pathologic role of HSC efferocytosis in BDL mice,
galectin-3 was shown to mediate apoptotic body uptake by HSCs
in vitro, and BDL-induced liver fibrosis was decreased in galectin-
3 knockout mice.107 While these findings raise the possibility
that KC- or HSC-mediated efferocytosis could drive inflammation
and fibrosis in cholestatic liver disease, a direct link to
efferocytosis in vivo is lacking.

A beneficial role of efferocytosis by hepatic macrophages in
cholestatic liver disease has been suggested by a study exam-
ining the resolution of liver fibrosis in a reversible BDL model. In
this model, BDL-induced liver fibrosis in mice was reversed by
surgery that restored bile flow. During reversal of fibrosis,
hepatic macrophages surround apoptotic cholangiocytes and
there is an increase in the activity of collagen-degrading matrix
metalloproteinases.108 In vitro, engulfment of apoptotic
cholangiocytes by rat peritoneal macrophages increased the
expression of matrix metalloproteinase-3, -8, and -9. Pending
causation studies in vivo, these findings suggest that efferocytosis
by hepatic macrophages can promote the resolution of liver
fibrosis after reversal of bile duct blockage.

Efferocytosis in ALD
Following excessive alcohol consumption, the conversion of
alcohol to acetaldehyde in the liver causes liver injury due to
protein adduct formation and oxidative stress, as well as
promoting hepatic steatosis due to increased fatty acid synthe-
sis.109 In addition, alcohol uptake affects immune cell activity in a
manner that contributes to hepatic inflammation.110,111 There are
in vitro data to suggest that defective efferocytosis by hepatic
macrophages may contribute to liver injury in ALD. For example,
exposure of macrophages to ethanol impaired their ability to
engulf dead cells.112 This effect was associated with decreased
expression of the efferocytosis bridging molecule MFGE8 and
increased expression of HMGB1 (high mobility group box-1),
which was shown to suppress efferocytosis in ethanol-treated
macrophages. These effects could be prevented by treating the
macrophages with the antioxidant N-acetylcysteine, suggesting a
link between oxidative stress and defective efferocytosis in
macrophages. Moreover, as in CCl4-treated mice (above), the
livers of ethanol-treated mice contain two populations of
infiltrating macrophages, pro-resolving Ly6Clow macrophages
7vol. 6 j 100960
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and pro-inflammatory Ly6Chigh macrophages.113 When Ly6Chigh

macrophages were incubated with apoptotic hepatocytes ex vivo
to enable efferocytosis, the macrophages converted into a more
resolving, Ly6Clow-type phenotype, which is consistent with the
concept of efferocytosis-induced resolution (above). There may
also be defective efferocytosis by hepatocytes in ALD, as
apoptotic cell phagocytosis was suppressed in primary hepato-
cytes isolated from ethanol-fed rats, which may be caused by
impaired asialoglycoprotein receptor function in hepatocytes
upon ethanol administration.12 However, whether efferocytosis
by macrophages or hepatocytes is blocked in the livers of mice or
humans following excessive alcohol consumption remains to be
determined.

Neutrophils and their pro-inflammatory product neutrophil
extracellular traps (NETs) are elevated in the livers of humans
with ALD and contribute to liver inflammation in ALD.114 The
accumulation of both neutrophils and NETS in the livers of
individuals with ALD may be due to impaired clearance by
hepatic macrophages.115,116 In vitro, a particular subset of neu-
trophils that accumulates in ALD and NETs were poorly cleared
by macrophages,116 which may be due to increased expression of
the "do-not-eat-me" molecule CD47 and to decreased expression
of the "eat-me" molecule PS on these neutrophils.114 Moreover,
treatment of macrophages with ethanol blocked their ability to
engulf NETs.115 Thus, pending in vivo studies, it is possible that
impairment of neutrophil and NET clearance by hepatic macro-
phages contributes to inflammation in ALD, which could be
additive or synergistic with the resolution-suppressing effect of
impaired efferocytosis.

Efferocytosis in MASH
MASH is emerging as the leading cause of liver disease world-
wide owing to the epidemic of obesity.117 MASH is characterised
by lipid accumulation in hepatocytes and multiple insults that
cause liver inflammation, hepatocellular death, and fibrosis,
which is the factor that correlates best with clinical
outcomes.118,119 The death of hepatocytes is a key feature of
MASH6,120,121 and has been linked to liver fibrosis via the acti-
vation of HSCs by dead cell debris.6,23,122,123 Until recently,
knowledge about dead hepatocyte clearance in MASH has been
limited to mostly descriptive rather than causation studies.
Earlier work showed that KCs form "crown-like structures" that
surround and appear to process remnant lipid droplets of dead
hepatocytes in MASH livers,124,125 but the role of these crown-
like structures in efferocytosis remains unproven. Other studies
showed that the phagocytic activity of KCs was reduced in the
livers of MASH rats vs. control rats.126,127 In another report,
macrophage mTORC1 activity, which is decreased in human
MASH vs. control livers, was shown to play a protective role in
experimental MASH.128 In vitro studies revealed that in macro-
phages engulfing apoptotic hepatocytes, there was an increase in
mTORC1 activity and subsequent release of calcium from
mitochondria, which contributed to efferocytosis-induced
polarisation of the macrophages toward a resolving-type
phenotype. Macrophage mTORC1-deficient MASH mice exhibi-
ted increased hepatic inflammation, but a direct, causative link to
an impaired efferocytosis-mediated resolution response remains
to be demonstrated.

Several recent studies have suggested that the macrophage
efferocytosis receptor TREM2 plays a role in efferocytosis in
MASH. One group reported that Trem2 mRNA is increased as
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non-alcoholic fatty liver disease develops in mice fed a high-fat/
high-cholesterol diet but that ADAM17-mediated cleavage of
TREM2 during MASH progression partially lowered TREM2
protein expression on monocyte-derived hepatic macrophages.20

Experimental deletion of macrophage TREM2 in this model
further accelerated the development of MASH, including liver
fibrosis, which was associated with an increase in apoptotic
hepatocytes. Moreover, macrophages isolated from the livers of
the Trem2-knockout mice were less able to engulf apoptotic
hepatocytes than macrophages from wild-type mice, which was
confirmed in another study.129 Although efferocytosis was not
measured in situ in the livers of these mice, the data from this
study support the notion that TREM2 on hepatic macrophages
can mediate the clearance of dead hepatocytes and that impaired
efferocytosis due to TREM2 cleavage may be a factor in MASH
progression. Consistent with this idea, soluble TREM2, the
product of TREM2 cleavage, is increased in the plasma of humans
with MASH.130,131

If the clearance of apoptotic cells is indeed impaired in MASH
livers, how might it contribute to liver fibrosis? One obvious
mechanism is HSC activation by the debris of uncleared dead
cells.6,23,122,123 For example, DAMPs released from the mito-
chondria of dead hepatocytes (mito-DAMPs) are increased in the
plasma of individuals with MASH, and correlations were shown
among mito-DAMPs, liver fibrosis, poor resolution of necrotic
debris, and decreased uptake of injected apoptotic thymocytes in
a non-MASH liver injury model.123 Other HSC-activating DAMPs
released from uncleared apoptotic cells may also be involved,
such as molecules that activate the HSC purinergic receptor
P2Y14.122 However, further work is needed to demonstrate
impaired efferocytosis of dead liver cells by macrophages in
MASH livers and then, if found, to link this impairment directly
and causatively to DAMP-mediated HSC activation. An additional
idea based on the aforementioned studies in acute livery injury
models (above) is that defective efferocytosis in MASH
impairs the conversion of pro-inflammatory macrophages to
pro-resolving macrophages and thereby impedes resolution of
MASH-induced liver inflammation and injury.

In addition to apoptosis, hepatocytes die by necroptosis in
MASH.6 A recent study from our group showed that necroptotic
hepatocytes were poorly cleared by hepatic macrophages in both
human and experimental MASH due to the upregulation of CD47
on necroptotic hepatocytes and SIRPa on MASH macrophages.39

Most importantly, blockade of either CD47 or SIRPa in mice with
established diet-induced steatohepatitis improved the uptake of
necroptotic hepatocytes by hepatic macrophages, as measured
using an in situ efferocytosis assay, and lessened subsequent HSC
activation and the progression to MASH-related fibrosis.
Although the mechanisms linking impaired clearance of
necroptotic hepatocytes to MASH fibrosis remain to be eluci-
dated, these findings raise the possibility of a therapeutic
approach to blocking steatosis-to-fibrosis progression in MASH,
i.e., by blocking the CD47-SIRPa axis to improve the clearance of
necroptotic hepatocytes.
Conclusions and future directions
There are several themes that emerge from this review. First, the
results of most studies suggest that the clearance of dead cells by
hepatic macrophages in various types of acute and chronic liver
diseases protect against or help resolve liver injury and/or liver
8vol. 6 j 100960



fibrosis. However, there have been other reports suggesting that
efferocytosis by hepatic macrophages can promote a fibrotic
response in certain experimental liver disease models, e.g., those
induced by CCl4 or BDL. This may not be surprising given that
resolution-induced tissue repair can involve a scarring response
and that increased production of TGFb is a well-known conse-
quence of efferocytosis.14,132 Moreover, dead cell clearance by
HSCs may contribute to HSC activation and liver fibrosis in viral
hepatitis, but further proof of the importance of this mechanism
in vivo is needed. In this context, how the type of cell death, e.g.
apoptosis vs. necrosis, affects the roles of efferocytosis in liver
disease deserves future study. Second, in most studies showing a
protective role of efferocytosis, the most common proposed
mechanism is efferocytosis-inducedmacrophage reprogramming
to a pro-resolving phenotype, particularly in ALI, although, as
noted above, some studies suggest that benefit is also conferred by
the decrease in inflammatory debris. Third, despite the impor-
tance of this topic and the presentation of important in vitro,
ex vivo, and correlative in vivo data, only a few studies include
robust molecular-genetic causation experiments that causatively
link defective hepatic macrophage efferocytosis to liver injury or
fibrosis. Although some studies report on apoptotic cell accumu-
lation in the liver, quantification of dead cell uptake by hepatic
macrophages in situ is usually lacking. Fourth, while some studies
present correlative data with human liver specimens or plasma,
genetic links that could begin to suggest causation in humans are
lacking. Thus, while numerous studies suggest that dead cell
clearance or lack thereof may play important roles in determining
the outcome of both acute and chronic liver diseases,morework is
needed to bolster these ideas.

The impact of future studies in this area is likely to be sub-
stantial in terms of providing pathophysiologic insight and
suggesting new therapeutic ideas, especially related to liver
JHEP Reports 2024
fibrosis. Studies in MASH have particular potential given the
importance of dead liver cells and various macrophage pheno-
types in this disease, in the context of MASH emerging as the
leading cause of chronic liver disease worldwide.117 In liver
diseases in which impaired clearance of dead hepatocytes by
hepatic macrophages likely contributes to liver fibrosis, therapies
to boost efferocytosis warrant consideration. For example, as
noted, blocking either CD47 or SIRPa boosts the clearance of
necroptotic hepatocytes in experimental MASH and thereby
dampens the progression to liver fibrosis.39 In this context,
antibodies that block the CD47-SIRPa axis are in clinical trials for
cancer. Another strategy is to leverage the tissue-repair capa-
bilities of pro-resolving mediators, which not only boost reso-
lution but can also enhance efferocytosis.16,17,133 As one example,
administration of resolvin D1 was shown to improve liver repair
in experimental models of both ALI95,134 and ALD.135 Additional
pharmacological strategies to enhance efferocytosis are being
investigated.136 Finally, exciting advances in developing thera-
peutic “designer” macrophages may lead to new types of
efferocytosis-based therapies for liver disease, e.g. by infusing or
generating in vivo “super-eater” macrophages that home to the
liver. For example, a recent study described the design of mac-
rophages that express a “chimeric receptor for efferocytosis”
(CHEF) by fusing a specific signalling domain within the cyto-
plasmic adapter protein ELMO1 to the extracellular
PS-recognition domains of the efferocytosis receptors BAI1 or
TIM4.137 These macrophages were shown to boost efferocytosis
and improve tissue repair in several in vivo models, including a
model of diethylnitrosamine-induced hepatotoxicity.137 Such
designer macrophages could be tailored to specific types of liver
disease based on ongoing efforts, such as those highlighted in
this review, to understand mechanisms and consequences of
dead cell clearance in these diseases.
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